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LETTER TO THE EDITOR 

On the coherent potential approximation in the 
functional integral approach to itinerant electron 
magnetism 
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t Department of Electrical Engineering, Kagoshima University, Kagoshima 860, Japan 
$ Sugiyama Jogakuen University, Nagoya 464, Japan 

Received 27 September 1989 

Abstract. The so-called arbitrariness accompanying the Stratonovich-Hubbard trans- 
formation of the Hubbard model in the functional formalism is investigated in the coherent 
potential approximation (CPA). A dynamical theory of the CPA, which is perfectly free from 
the arbitrariness, and a modified static theory of the CPA, in which dynamics of the spin and 
charge fluctuations are taken into account partially, are proposed. In contrast with the 
conventional static theory of the CPA, the modified static theory of the CPA has the advantage 
that by meansof the use of the variational principle the arbitrarinessof the transformation can 
be removed. In the limit of a small intra-Coulomb integral, a generalised spin susceptibility is 
estimated and the result of the Hartree-Fock approximation is reproduced in both the 
dynamical and modified static theories of the CPA. 

Functional integral formalism based on the Stratonovich-Hubbard transformation has 
been extensively used in the study of itinerant electron magnetism. In particular, the 
coherent potential approximation (CPA) developed by Soven (1967) so as to investigate 
the electronic structure of the alloying system has been successfully applied to the 
Hubbard model in the functional integral scheme (for example Hubbard 1979, Hase- 
gawa 1980, Morkowski and Wosicki 1989). As is well known, there is an arbitrariness in 
the Stratonovich-Hubbard transformation and it does not give a unique result in the 
approximate theory of which we are eventually forced to make use. Therefore, the 
results do not always reduce to that of the Hartree-Fock approximation in the limit of 
small intra-Coulomb integral U. In our previous work (Hirooka and Shimizu 1988, 
hereafter referred to as I) we have discussed this subject in the Gaussian approximation 
and shown that the results of the Hartree-Fock approximation are reproduced by 
including dynamics of the fluctuations and that the arbitrariness is removed by means of 
the variational principle. In this letter we discuss the same subject in the CPA. The static 
approximation has been exclusively adopted in the treatment of random fields in the 
conventional theories of the CPA. It is shown that the difficulties in these theories are 
removed by taking into account dynamics of the fluctuating fields. We investigate the 
applicability of the variational principle in approximate methods involving the CPA and 
the nature of the methods in the limit of small U. 

We adopt a single-band Hubbard model and the Hamiltonian is given by 

H = t,a;a,, + U 2 n,+n,-. (1) 
l * ] , U  1 

Here a,, (a$)  is the annihilation (creation) operator for an electron with spin U at the 
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Wannier site i ,  nio = a ~ a i o ,  and tu are the transfer integrals. The interaction term in 
equation (1) may be rewritten as follows: 

U 2 ni+ni- = - 2 (&la; + bKn? - Wni)  (2) 
i i 

with K = 3J - 2U and W = (3J - U)/2 ,  whereJis an arbitrary parameter. Through the 
Stratonovich-Hubbard transformation the partition function of the system is expressed 
in the form of a functional integral of fluctuating fields &(U) and q ( u ) ,  which are 
conjugate to the spin and charge operators ai(u) and ni(u), respectively, as follows: 

(3a) Z = e-pQ = Tr(e-P(H-FN)) = N DEDK e-fiv(g-K) i 
with 

1 QO(g, K) = - - log[Tr(e-P(Ho-SN) T ( S ) ) ]  (3c) 

( 3 4  
P 

s = exp p 2 ( ~ g i ( u ) a i ( u >  + m K i ( u ) n i ( u >  - ~ n ~ ( u ) ) )  ( i.u 

c = (1 /P)  jd d u  E. 

wherep = l/kBT, cis the chemical potential, Nis the normalisation constant, Tis Wick's 
time ordering operator, H o  is the non-interacting part of equation (1) and 

i 0 i .  u 

Now, equation (3a) is rewritten as follows: 

with Ei = Ei[wO] and K~ = K ~ [ w ~ ]  and the Fourier transformations for Ei(u) and q ( u )  are 
defined as 

with qi(u) = &(U) or K ~ ( u )  and w1 = 2Zn/p (1: integer). Generally we have the inequality 
(e-f(*sK)) > e-(f(E%K)), where ( A )  means A averaged over an arbitrary probability distri- 
bution. Therefore, we find from equation (4a) that 

0 < Q,,, = - -log N o  DE DK e-pym(*-K) 1 P U (5a)  

(5b) 
with Yu,(E, K) = Q ) o ( E ,  K) + Q O m ( E ,  K) and 

Q o m ( E >  K) = ((Qo(E> K))) 
where Q is an exact thermodynamic potential and Q0,,,(E, K) is a functional of only Ei 
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and K ~ ,  which are the zero-frequency components of &(U) and q(u) .  The inequality 
(5a) shows that the variational principle is applicable to 52,. In the so-called static 
approximation, the thermodynamic potential Q, is given as 

Q, = - ( I  (6) -log N o  DE DK ~ - B ( ~ , o ( ~ , K ) + R o ~ ( S . K ) )  

P 
where Q,,(lj, K) is given by putting Ei[wI] = 0 and K ~ [ w ~ ]  = 0 for 1 # O  or &(U) = E j  and 
K;(u)  = KiinQ,(E, K)ofequation(3c). IfQ,(E, ~)hasamaximumvaluea t&[w~]  = Oand 
K ~ [ w ~ ]  = 0 for 1 # 0, we have Qo,(E, K) = ( (Q, (E,  K))) < Qo,(ij, K) and so Q < Q, < Q,. 
However, we cannot prove the inequality Q < 52, < Q, or Q < Q, for arbitrary values 
of J in equation ( 2 ) .  It is rather probable that the inequality Q < Q, is broken for some 
values of the parameter./. This fact should be kept in mind when we apply the variational 
principle to Q, in equation (6). This subject will be referred to later in the case of small 
U.  From now on we describe the approximation used when deriving Q, in equation ( 5 )  
as the modified static approximation. 

As discussed in I, the approximate thermodynamic potential Q, or Q, is dependent 
on the arbitrary parameterJ, unlike the exact Q. For Q,, because of the inequality (5a), 
the variational principle can be applied to determine the optimum value of J .  Then, the 
relation aQ,/aJ = O gives 

%(a?>) - (ai>)2) + ((fiT>) - ( f i i>)2)  = 0 (7) 
where 

- 1 B  
A = 3 1, [ A ( u ) ]  du [ A ( u ) ]  = Tr{e - P ( H o - S N )  T [ A ( u ) S ] } / Z ,  

with 

2 0  = Tr{exp[ - P W ,  - tlv>lT[SI) 
and ( . . . ) means averaging over the distribution exp( - /3Ym(E, K)). Equation (7) gives 
for u / t  -e 1 

J -  U / 2  (8) 
which agrees with the result obtained in I in the Gaussian approximation. Moreover, we 
can derive the results of the Hartree-Fock approximation, regardless of the value of J ,  
by the use of Q, in equation (5a) in contrast to the case for the static approximation. 

On the other hand, the optimum condition dQ, /aJ  = 0 in the static approximation 
gives 

- - +([aiO21> + ( [n i (u l2 ]>  - a([ni(u>l> = 0 (9) 
where 

- 1 p  
A = 31, A ( u )  du.  

The corresponding equation in the exact theory is given by B = 0 with B(u)  = 
4 ( [ 0 ~ ( u ) ~ ] )  + ( [n i (u )2 ] )  - 2([ni(u)]) .  Then the identity B(u)  = 0 holds regardless of the 
values of J and U because of the nature of the Fermi operator. However, equation (9) 
is not satisfied even when U = 0 and J = 0; but it gives J # 0 in the limit of U = 0. On 
the other hand, we have Q,(U = 0, J = 0) = Q ( U  = 0) from equations (3a) and (6). 
Considering the function f ( J )  = Q,(U = 0, J )  - Q ( U  = 0), we have f(0) = 0 and 
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f ' ( 0 )  # 0, where f ' ( J )  = df(J)/dJ. This means that a value of J that satisfies f ( J )  < 0 
exists in the small region around J = 0. Assuming that Q,( U ,  J )  is a continuous function 
of the variables U and J ,  it is concluded that values of U and J that satisfy the inequality 
Q,( U ,  J )  < Q( U) exist, at least in the small region around U = 0 and J = 0. 

From equations (3c) and ( 3 4  we obtain AQo(E, K) = - (1/P) Tr(log(1 - gV)) in the 
matrix representation, where 

AQo(E, 4 = Q o ( E ,  K) - Qo 

Qo = - (l /P) log(Tr(e-B(Ho-5w)) 

V,(U, U ' )  = - ( d E , ( U ) O  -k %%,(U) - w)6(U - U ' ) 6 ,  

in the spinor representation, ~ i s  the Pauli spin matrix and g is a Green function of a free 
electron. In order to apply the CPA to our system, we rewrite AQo(E, K) as follows, 

A Q o ( E , ~ )  = Tr(log(1-gC))-Tr(log(1-F(V-2))-Tr(log(1 -Dt))]  (10) 

(11) 

where the self-energy function I: and renormalised Green function G are defined by 
1 G = (g-1 - E)-' = ((g-' - v)- ). 

F = G,6, and D = (1 - 6,)G, are the diagonal and off-diagonal parts of G, respectively, 
and t = (V - Z)(1 - F(V - E))-' is a t-matrix. Here, ( .  . .) in equation (11) means 
averaging over the appropriate distribution of the random fields E and K. Following the 
argumentation used when deriving the inequality (5a) ,  we find from equations (3a) and 
(3b) that 

1 1 
A Q  < AQZPA = - -Tr(log(l - gZ)) - Flog ( N o  1 DCDK e-Bydc(E3K) 

P 
1 

- -(Tr(log(l - Dt))) P 
with 

1 
v d c ( E ,  K) = (Ei(U>2 + K?(U)) - -Tr[log(l - F(v-Z))] (12b) P 

where AQ = Q - Q,, and ( .  . .)  denotes averaging over the distribution e-flydc([-K). The 
inequality (12a) shows again that the variational method is applicable to AQZpA. The 
variational function is a self-energy function Z. Thus we have the thermodynamic 
potential in the dynamical CPA, which is given by omitting the third term in equation 
(12a) (Ducastelle and Gautier 1976, Paquet and Leroux-Hugon 1983). Then, the self- 
energy function C is determined by the so-called Soven equation as ( t )  = 0 or 

C = (V(1 - F(V - (13) 

where a single-site approximation is adopted: 

The static approximation is obtained by putting Ei(u) = gi and K, (u)  = K~ in equation 
(12b), which defines Ysc(E, K) in place of v d c ( E ,  K). On the other hand, we get a 
thermodynamic potential AQgPA in the modified static CPA by using Ymc(E, K) in place 
of Ydc(E, K) in equation (12a): 

= Z,&. 
f f]' 

y m c ( E >  K )  = Q ) o ( E ,  K )  - (1/S)((Tr[log(l-F(V-Z))l)) (14) 

where qo( 5, K) and the definition of (( . . . )) is given in equations (4c) and (4b). The Soven 
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equation is given by ( ( ( t ) ) )  = 0 or C = (((V(1 - F(V - C))-’))), where (. . . ) means 
averaging over the distribution e-pymc(t*K). Then, we have inequalities 

AQ < AQ, < AQkpA 

A Q  < AQ$PA < AQZpA 

(15a) 

(15b) 

and 

where AQ, = Q - Qois a thermodynamic potential in the modified static approximation 
and AQ:pA is that in the modified static CPA. It is worth noting that the thermodynamical 
potential AQ$PA in the dynamical CPA, like the exact potential A Q ,  is independent of 
J .  In fact, we can verify the identity dAQ$pA/dJ = 0 by direct calculation, but this will 
be left to forthcoming work because it involves a somewhat lengthy manipulation. On 
the other hand, AQZpA is dependent on J and so the optimum value of J is determined 
by the relation dAQ$”/dJ = 0 and the variational principle, as in the case of AQm, 
because of the inequality (15a). In the static CPA, although we have the relation 
AQ, < AQFPA, the inequality AS2 < AQFpA is not always guaranteed for all values of 
J ,  where AQ, = 52, - Qo. Therefore, we do not have the best choice for the value of J 
in the static theory of the CPA. 

Now, we add an external field V, to our system in order to estimate the magnetic or 
the electric susceptibility. Then, equation (12a) becomes 

AQ FPA = - - Tr[log( 1 - g( V, + C) )]  - - log ( N o  Dlj DK e 

and also we have the Soven equation (13) with a renormalised single-particle Green 
function G = (g-l - V, - C)-’. From equation (16) the generalised susceptibility can 
be derived by using the functional derivative method by Baym (1962) and Baym and 
Kadanoff (1961) as was done in I. We put V, = - h,(l, l’)dl,, where the argument 1 or 
1’ represents the imaginary time and the spin state. A generalised susceptibility is defined 
as follows: 

1 (16) 
1 1 
P P 

L (12, 1 ’2’) = - d G,, (1,l ’)/ah, (2‘ ,2) (17) 

Ll,(12,1’2’) = L0,(12,1’2’) - L;(12,1r2)E(2’1’,21)L/,(12,~2’), (18) 

and it satisfies the following integral equation: 

/ 

where L:(12,1’2‘) = -Gr,(1,2’)G,l(2,1’) and E(l2,1’2’) = dZ(l,lr)/dF(2’,2) is the 
effective interaction. The underlining of 1 and 2 denotes taking the summation with 
respect to the argument 1 or 2. Equation (13) defines the self-energy function C as a 
functional of a single-particle Green function G, from which the integral equation for 
the effective interaction Z is derived as 

E ( 1 2,1’2’) = E 0 ( 12,1’2’) - z 0 ( 12,l’Z) F ( 2 , l )  F( 1’,2) E (12, L2!) (19a) 

(19b) 

( 19c) 

with 

Eo (12,1’2’) = ( r (  1,2’)t(2,1’)) - (t( 1 ,l’)t(r,r’)) 

=0(12,1’2’) = (((@,2‘)t(2,1’)))) - (((f(l,l’)))((t(2,2’)))) 

in the case of the dynamical or the static CPA and 

in the case of the modified static CPA, where the meaning of (( . . . )) is given by equation 
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(4b) and ( .  . . )  means averaging over the distribution e-fiydc(tsK), e-@y=(t-K) or 

As an example of the solution of equations (18) and (194 we will derive the transverse 
spin susceptibility below in the limit of small U. Then we make the approximation t = V 
in equations (19b) and (19c). We need S.O++-(ul, u 2 ;  U;, U;) and its Fourier trans- 
formation is given by, in the lowest order of U and J ,  

e-pydc(E.I). 

E.O+f-(w,w’,w”) = - u/p (20a) 

Eo++- (w,w’ ,w”)  = ( K  - 4 / 2 p  - ( J / P ) S ( w )  (20b) 

(2Oc) -0 e-++- (w,w’,w’’) = [(K-J)/2P]S(o + w‘ - U”) - (J/p)S(w) 

in the dynamical CPA, 

in the modified static CPA and 

in the static CPA, respectively. Here, the Fourier transformation is defined as 

f ( u l , u 2 ; u ; , u ; )  = C f ( ~ , w ~ , w ’ ~ ) e x p { i [ w ( u ~  - u 2 >  + w r ( u 1 - u ; ) + w r ’ ( u 2 - u ~ ) 1  

and w = 2nn/p (n: integer) etc and it is noted that (K-J)/2 - J  = - U. The transverse 
spin susceptibility is defined as 

x - + ( w ,  4 )  = ( l /P)ZL-++-(W w; 4 )  
0 - 

with 

x exp{-i[w(ul - u 2 ) + w ’ ( u 1  -u;)]}exp(iq.Rij). 

Finally, we have, in the lowest order of U ,  

in the dynamical CPA, where 

and 

where 

q w )  = - o / p ) E  F- + (U). 
Q) - 

In the modified CPA, the static susceptibility is obtained as x:c$(q) = x - + ( q ,  0) in 
equation (21a). Then, Z is given as Zu(w) = Un-, in the limit of small U both in the 
dynamical and in the modified static CPA, where 

nu = (1/P) z Fu(w) .  
0 - 

Equation (21b) shows the reduction of an effective interaction by the local spin fluc- 
tuations. Moreover, we have xF!:-’+”(q) = IIl(q)/(l - JeffII2(q)) in the static CPA, where 
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Jeff = J/(1 + J T ( 0 ) )  and II , (q)  = l12(q) = xo-+(q, 0) in the limit of J ,  K = 0, and 
Z,(w) = -3(K - J)n-, - !i(K + J)n, + JF- , (o) /p  + 1(K + J)F,(w)/p.  Thus, the results 
in the dynamical and the modified static CPA reduce to that in the Hartree-Fock theory, 
regardless of the value of J ,  in the limit of small U ,  in contrast with the case for the static 

Unfortunately, we cannot solve analytically equations (18) and (19a) with the full 
expression of the t-matrix in (196). In particular, it is very difficult to solve equation (13) 
even numerically in the dynamical CPA, because we are forced to carry out the functional 
integration along the path of the imaginary time. Equation (13) may be simplified by 
adopting the decoupling approximation introduced by Hasegawa (1980), which seems 
to be useful in the dynamical CPA and the modified static CPA, too. However, Hasegawa’s 
decoupling method has been criticised by Paquet and Leroux-Hugon (1983) as it yields 
unphysical results at high temperature. These authors have investigated the nature of 
the static CPA in detail by solving equation (13) directly. Calculation such as that carried 
out by them seems to be possible in the modified static CPA, too. Although dynamical 
fluctuations of spin and charge densities are artificially forbidden in the static approxi- 
mation, it has been found against our expectation that the inequality Q < 52, does 
not always hold in the functional integral formalism under the Stratonovich-Hubbard 
transformation. Rather, we may say that a parameter J, which cannot be determined 
using the variational principle, should be chosen so as to satisfy the inequality. The 
modified static CPA introduced in this work is essentially the static approximation. 
However, it has some merits in comparison with the simple static CPA, as it gives grounds 
for the use of the variational principle and it reduces to the Hartree-Fock approximation 
in the limit of small U. We consider that our optimum determination of the parameter 
J has led not only to the removal of the arbitrariness in the theory but also to the 
remarkable improvement of the approximate theory comparled with the use of the less 
accurate values of J .  

In conclusion, we have investigated a few approximation methods in the functional 
integral formalism, where the Stratonovich-Hubbard transformation is used. It has 
been shown that the inequality S2 < Q,, which is essential to the use of the variational 
principle, does not always hold in the static approximation. Here, Q and Q, are the 
thermodynamic potentials of the exact theory and the static approximation, respectively. 
Therefore, the so-called arbitrariness accompanying the Stratonovich-Hubbard trans- 
formation cannot, essentially, be removed in this approximation. The dynamical theory 
of the CPA, which is as completely free from the arbitrariness of the parameter J as the 
exact theory, has been given. In spite of the difficulty of the direct solution of the 
Soven equation, the perturbative treatment seems to give a meaningful result in this 
approximation. The modified static CPA, which is revised to include the effects of the 
dynamical fluctuation of spin and charge densities in part, is useful in the sense that it 
can be used for determining the value of the arbitrary parameter J by the variational 
method and reproduces the results of the Hartree-Fock appiroximation in the limit of 
small U. Moreover, this approximation is far more tractable than the dynamical CPA. 

CPA . 
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